If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9t^2-60t+63=0
a = 9; b = -60; c = +63;
Δ = b2-4ac
Δ = -602-4·9·63
Δ = 1332
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1332}=\sqrt{36*37}=\sqrt{36}*\sqrt{37}=6\sqrt{37}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-6\sqrt{37}}{2*9}=\frac{60-6\sqrt{37}}{18} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+6\sqrt{37}}{2*9}=\frac{60+6\sqrt{37}}{18} $
| 4(x+3)-x=18 | | 2(5x+16)+12=50 | | 3x²+4=79 | | 5y=35. | | 100=25u | | 6+5x=-3+30 | | 1/4)d-2)=6 | | 3x+10=9x+26 | | t+3+t+1+2t=180 | | 9t^-60t+63=0 | | 7/8x-3=14 | | -8(4+3v)=88 | | -(3+18r)=14-r | | 1/6/n=3 | | 1/4x+(-1.5)=1/4x-3/2 | | 14+8x=−7+5x | | n+6+5+1=-4n+n | | -53+5x=22+8x | | 6x+4=2x+1 | | 6(10y–4)= | | 5(3x+3)=-75 | | 7-5a=a+3-4a | | 2x+42=4x+76 | | 15x–18=11x+18 | | n/19=-16 | | 2z+z+4+59=180 | | 4+k/9=5 | | {3}{4}x=60 | | 8x-35=-3(8x+1) | | 5x-12=15x+18 | | -8+2(3+2x)=-30+4x | | -2(v+3)=3(v+4+76 |